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Abstract
For highly doped uncompensated p-type layers located within the central part of GaAs/AlGaAs
quantum wells, we observed the activated low-temperature behavior of conductivity. The low
values of the activation energy, ε4 = (1–3) meV, cannot apparently be ascribed to standard
mechanisms. We attribute this behavior to the existence of a narrow band of extended states
near the maximum of the density of states in the impurity band. The Hubbard repulsion
prevents metallic transport of holes over these states. However, the minority
carriers—electrons—supplied by background defects and situated at low temperatures within
the tail of the impurity band can be activated to the above mentioned band of extended states.
We refer to this behavior as the virtual Anderson transition since the conductance is maintained
by the extended states formed within the impurity band though the conductivity is not metallic.
The low-temperature (T � 4 K) conductance is strongly non-Ohmic: the I –V curves are
S-shaped that leads to a breakdown behavior. We explain the observed low threshold fields
(�10 V cm−1) by the fact that we are dealing with the impact ionization of the electrons from
the states below the chemical potential to the band of extended impurity states situated close to
the chemical potential, the ionization energy being small.

1. Introduction

Although the problem of metal-to-insulator transition (MIT)
has been discussed for many years, it is still far from being
completely understood. In particular, we can mention recent
debates concerning MIT in 2D systems apparently observed in
some systems with high mobility (for a review see for example
[1]). The situation seems not to be fully understood yet and
the nature of the ‘metal’ state is still questionable. At the same
time, several indications of a crossover between the insulator-
like and metal-like behavior were observed in different doped
quantum-well structures [2–5].

In our view, a productive approach to the problem is
to start from systems with hydrogen-like localized states
originating from intentionally introduced dopants. This
situation can be the case in a quantum well with a selectively
doped central part. If the structure is not intentionally

compensated, then the disorder is weak and is mostly
controlled by the background defects with a concentration
independent of doping. Thus the relative degree of disorder
for the samples close to MIT is expected to be less for p-doped
materials, where the critical concentration of dopants is larger
and the relative number of the background defects compared to
dopants is less.

This paper summarizes our results on the metal–insulator
crossover in 2D p-doped uncompensated GaAs–AlGaAs
quantum-well structures. In such structures, the background
compensating defects (with a concentration by 2–3 orders
of magnitude less than the concentration of dopants) are
most probably situated far from the 2D layer of dopants [6].
As a result, firstly, the impurity band is narrow since the
concentration of charged defects is small; secondly, the
chemical potential is located not far from the center of the
impurity band [6] in contrast to 3D structures where it is
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located very deep in the band tail. As we will show, the
Anderson transition in such structures takes place at a lower
concentration than the Mott transition.

Recently we reported observation of activated low-
temperature conductivity in Be-doped uncompensated GaAs/
AlGaAs single and multiple quantum wells with anomalously
small activation energies (more than an order of magnitude
smaller than the Bohr energy of the dopant) [7]. This
behavior cannot be associated with the nearest neighbor
hopping because it was accompanied by an increase in the
Hall mobility with a decrease of temperature contrary to the
theoretical prediction [8] for the nearest neighbor hopping.
Thus we believe that in that work, as well as here, we face
a novel phenomenon—activation of minority carriers to a band
of extended states (BES) existing near the center of a narrow
impurity band. Such a band can exist in a narrow window of
concentrations, which are less than those described by the Mott
criterion of MIT for the case of a wide impurity band due to
smaller scatter of the site energies. However, the upper and
lower Hubbard bands in this case are still not overlapping and
all the sites within BES are singly occupied by the holes. The
conductivity over these states is possible only due to activation
of electrons (resulting from weak background compensation)
from the states below the chemical potential. The more
detailed considerations are given in section 3. We call this
mechanism the virtual Anderson transition [7] exploiting the
analogy to the virtual thermodynamic phase transition with
negative transition temperature considered as a precursor of
a true phase transition where accomplished new phase is not
observed.

In the present paper, in addition to the data concerning
the temperature dependence of conductivity and mobility, we
also present new data on the sign and magnitude of the low-
temperature Hall effect, as well as the data on non-Ohmic
low-temperature transport characterized by a S-shaped I –V
curve. The Hall coefficient at low and high temperatures has
different signs indicating different signs of dominating carriers
at low and high temperatures. Note that these phenomena
are observed in a relatively narrow region of the dopant
concentration where the band of extended states is already
created but the two Hubbard bands still do not overlap. We
will show that all these results are consistent with our model
of the virtual Anderson transition in the narrow impurity band.
The paper is organized as follows. In section 2 we report the
experimental results, which are then discussed in section 3.
The main results are summarized in section 4. The criterion for
impact ionization leading to pronounced nonlinear behavior is
considered in the appendix.

2. Experiment

We study multilayered structures grown by MBE as described
in [9]. The structures contained 1 or 5 GaAs quantum
wells with widths 15 nm separated by 100 nm barriers
of Al0.3Ga0.7As. The middle region of the wells (5 nm)
was doped by p-type impurities (Be); the volume impurity
concentration was controlled during the growth and varied
from 1 × 1018 atoms cm−3 up to 2 × 1018 atoms cm−3.

Figure 1. Temperature dependences of the resistivity. The sample
numbers according to table 1 are shown near the curves. For
comparison we also show a similar curve for the sample 200N2
of [3], which is in the regime of weak localization.

Table 1. Parameters of the samples. Here ε1 is the high-temperature
activation energy, ε4 is the low-temperature activation energy, σ0 is
the pre-exponential factor of ε4 conductivity.

No

No
of
wells

Well
width
(nm)

p300 K×
10−12

(cm−2)
ε1

(meV)
ε4

(meV)
σ0

(e2/h)

581 1 15 1 15 2 0.1
945 1 15 1.5 14 2.5 0.03
946 1 15 1.7 13 1.5 0.1
485 5 15 1.5 13 2.5 0.03

The critical concentration corresponding to the Mott
criterion of the metal–insulator transition in the bulk p-type
GaAs is 2 × 1018 cm−3. So the bulk concentration of acceptors
in our samples is of the order of or a bit less than the
critical one. The compensation is supposedly controlled by the
background defects situated both at the edges of the quantum
wells and within the barriers, the compensation degree being
small, K = ND/NA < 0.01. The parameters of the samples
are given in table 1.

Shown in figure 1 is the temperature dependence of the
resistance. Since we studied square samples these data provide
the sheet resistivity. At low temperatures (10–1.3 K) it obeys
the Arrhenius law, R ∝ exp(ε4/T ), with an anomalously low
activation energy, ε4 ≈ 1–3 meV. The activation energy, ε4,
decreased with an increase of the acceptor concentration (see
curves for the samples 945 and 946). As can be estimated
from the curves in figure 2, the pre-exponential factor in
conductance, σ0, is only 10–30 times less than the quantum
limit, e2/h = 4 × 10−5 �−1.

Figure 1 demonstrates the temperature dependences of
the Hall mobility, μ, for these samples. Note that in the
temperature domain 10–40 K the mobility decreases with
temperature. This behavior is contrary to the theoretical
prediction [8] of an exponential increase for the nearest
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Figure 2. Temperature dependences of the Hall mobility for two
samples showing the ε4-conduction.

neighbor hopping. We believe that the experimentally observed
behavior can be explained by scattering of delocalized
electrons by acoustic phonons [10, 11].

At higher temperatures, 40 K < T < 100 K, the Hall
mobility increases with temperature while for T > 100 K it
again starts to decrease. While the behavior at T > 100 K is
clearly explained as a result of scattering of the holes within the
valence band by optical phonons, the increase of Hall mobility
at intermediate temperatures needs a special analysis which
will be given later.

Temperature dependences of the Hall coefficient for these
samples at high temperatures (T = 300–50 K) are described
by the Arrhenius law, corresponding activation energies, ε1 ∼
ε0/2, being given in table 1. Here ε0 is the acceptor Bohr
energy. This is related to the fact that at temperatures >50 K
the concentration of holes in the valence band turn out to be
larger than the concentration of compensating defects, and
the chemical potential shifts to the position ε0/2. The low-
temperature behavior of the Hall coefficient will be discussed
in detail later.

Let us now turn to the nonlinear effects in conductivity.
figure 3 shows temperature dependences of resistance for
the samples 485 and 581 measured in a regime of constant
current. As temperature decreases, both the samples exhibit
sharp transitions from insulating behavior (Arrhenius law),
to the metallic behavior, the resistance decreasing by 1.5–
2 orders of magnitude. We attribute these transitions to an
electrical breakdown occurring when the voltage drop across
the sample (increasing with the temperature decrease under
condition of constant current) exceeds some critical value. The
transition temperatures differed for different samples, 3 and
2.4 K, respectively. This temperature is supposedly controlled
by the temperature-dependent voltage drop across the sample.

Figure 4 shows I –V curves of the samples (obtained
in the regime of constant I ) at T = 4.2 K. The curve
clearly demonstrates an S-shaped region. One notes that
the breakdown takes place at relatively weak electric field
(<10 V cm−1).

Figure 3. Temperature dependences of resistance of the samples 485
and 581 measured at constant current I = 0.1 nA.

Figure 4. I–V curve for sample 485 at 4.2 K.

3. Interpretation and discussion

As well known, the Anderson transition is a single-particle
problem depending on the interplay between the overlap
between the localized states and the spread of their energies.
The Mott transition, in contrast, is sensitive to the occupation
numbers and is inherently dependent on the on-site (Hubbard)
repulsion. The Anderson scenario of MIT is considered to be
the case in standard 3D doped samples with an intermediate
degree of compensation. In this case there exists a clear
mobility edge separating strongly and weakly localized states.
The MIT takes place when the Fermi level crosses the mobility
edge. In contrast, in weakly compensated materials with
a conventional impurity band the MIT combines features of
both scenarios and is sometimes called the Mott–Anderson
transition. Indeed, for the wide impurity band with a width
of the order of the Bohr energy of an isolated impurity the
criteria of the Mott and Anderson transitions actually coincide.
Namely, at the same concentrations the overlap integrals
become comparable both to the spread of the on-site energies
determined by the inter-site Coulomb interaction, and the on-
site (Hubbard) repulsion.
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However, these equalities are modified in the case of the
narrow impurity bands characteristic for weakly compensated
systems with a weak disorder. In this case the spread of the
on-site energies can be much less than the Hubbard energy.
Consequently, these states can cease to meet the criterion of
the Anderson localization. As a result, the extended states can
exist though the double occupation is still not allowed. One can
expect that the MIT in such systems should significantly differ
from that in the conventional impurity band. The presence of
the narrow band of extended states (BES) would not manifest
itself at all in the absence of compensation since this band is
fully occupied by the majority carriers (in our case, holes).
The transport of the majority carriers is blocked at temperatures
less than the Hubbard energy, T � U , since the width of the
BES is considered to be less than U . Consequently, the system
remains insulating despite the presence of the BES.

Background donors produce electrons, which can occupy
the acceptor states. One can consider these electrons as
the ‘minority carriers’ inside the (acceptor) impurity band.
Assuming that the net distance between the background donors
from the 2D layer is d one obtains that the Fermi level is
located at distance of

εF ≈ e2/κd (1)

below the center of impurity band [6]. One can expect that at
small dopant concentrations when all the states are localized,
and the conductance due to this ‘minority carriers’ is the
standard nearest neighbor hopping with the activation energy
ε3 = εF ≈ e2/κd . For our samples this estimate gives
ε3 ≈ (2–6) meV.

Increase of the dopant concentration leads to a subsequent
increase of the overlap integral. As a result, a narrow BES can
be formed. The criterion for such Anderson-like delocalization
in a narrow band can be written as [7]

NAa2 � α/ ln[ε0/(δε)] (2)

where NA is the dopant (acceptor) concentration, a is the
localization length and α is a numerical factor. For the 2D
case, α = 0.15. It is assumed that the width (δε) of the
impurity band is much less than the Bohr energy ε0. In this
case the conductivity is dominated by an activation of the
electrons, i.e., minority carriers from the background dopants
to the corresponding mobility edge. The corresponding scheme
is presented in figure 5. Note that the activation energy, ε4,
turns out to be much less than the Bohr energy ε0.

One could expect that increase of the compensation
degree (for the given NA), leading to an increase of the
electron concentration, would shift the chemical potential to
the center of the acceptor band. Correspondingly, at some
concentration the chemical potential would cross the mobility
edge resulting in metallic conductivity. However the position
of the chemical potential is still controlled by equation (1)
provided the concentration of compensating defects Nc �
NA. At the same time, when Nc becomes comparable to NA

strong disorder resulting from the charged defects of both kinds
inevitably increases δε up to values comparable to ε0 when the
criterion (2) can break.

Figure 5. Schematic diagram of the density of states in the samples
with narrow impurity band. The dark area represents the band of
extended states (BES) with the width �d; εF is the Fermi energy
measured from the center of the impurity band, ε0 is the distance
between the center of the impurity band and the valence band, while
ε1 and ε4 are the activation energies.

As a result, the presence of the BES in a narrow impurity
band can be seen only through transport of the activated
minority carriers. The discussed activated transport can be
considered as a precursor of true metallic conductance, which
would appear with an increase of Nc in the absence of the
enhancement of δε. This enhancement ‘kills’ the expected
Anderson transition in conductance, which would take place
provided the states at the Fermi level are extended.

As was noted earlier, the observed decrease of the Hall
mobility with temperature is incompatible with the nearest
neighbor hopping and leads us to the conclusion that the
activated minority carriers are delocalized. Indeed, then
the observed behavior can be explained by scattering of
delocalized carriers by acoustic phonons. This assumption
does not contradict the observed increase of the Hall mobility
with temperature at high temperatures. We attribute this
increase to the contribution of carriers activated to the valence
band, where scattering on charged impurities prevails. As
known, scattering on acoustic phonons is very sensitive to
the effective mass of the carriers. In particular, as it was
noted above, the ratio of the relaxation times with respect to
ionized impurities scattering and acoustic phonon scattering is
proportional to m2.

Previously we estimated the effective mass in the impurity
band for the sample with a metallic conductivity over the upper
Hubbard band [5]. The estimate was based on comparison of
conductivities along the valence and the impurity band. The
estimate explicitly exploited the Fermi statistics of the carriers
within the impurity band. We concluded that the corresponding
effective mass exceeded the valence-band mass by factor of
3. Unfortunately, here we cannot apply the same procedure
since the electrons within the BES obey Boltzmann statistics.
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However, we expect that the excess factor in our case must
be larger than estimated in [5] since typically the effective
mass increases with a decrease of the band width. Note
that an electron mass within the impurity band substantially
exceeding (by factor of 5) the mass in the conducting band
has been reported [14]. The dominant role of phonon
scattering in low-temperature mobility was also reported for
high-mobility 2D structures, see, e.g., [10, 11]. The high
mobility (�104 cm2 V−1 s−1) observed in our samples can be
explained by the fact that the disorder potential is weak since
the samples are uncompensated and the localized states are
mostly neutral.

Additional support for the above picture is given by the
opposite signs of the Hall coefficient at 4.2 and 300 K. Indeed,
the BES is equivalent to the existence of two mobility edges
separating the extended states from the localized tail states.
Near the lower edge, the states are electron-like, i.e., they
have positive effective mass (see figure 5). The states around
the upper mobility edge are hole-like, see, e.g., discussion
in [15]. At low temperatures the carriers in the BES are mostly
located close to the lower mobility edge, and the Hall effect
is electron-like. At high temperatures the main contributors to
the Hall effect are holes in the valence band. At intermediate
temperatures, 40 K < T < 100 K, both holes in the valence
band and electrons within the BES contribute to the Hall
coefficient. In this case, the Hall coefficient and mobility can
be written as

RH = − 1

ec

nμ2
n − pμ2

p

(nμn + pμp)2
, μ = RH(nμn + pμp) (3)

where n and p are electron and hole concentrations while μn

and μp are their partial mobilities. Obviously, both n and
p increase with temperature. The behavior of μn and μp

in the intermediate region is not as clear due to the possible
contribution of the scattering by charged centers resulting from
activation of the holes to the valence band. However, as
follows from the experimental results, at some temperature RH

vanishes. According to equation (3), the Hall mobility should
also vanish. We believe that it explains the observed minimum
in the temperature dependence of μ at T ∼ 50 K.

As for the breakdown behavior, it can hardly take place
in the regime of hopping conductivity. Indeed, the hopping
conductivity in finite electric fields was studied earlier for
a similar group of samples [9]. According to that work,
the hopping conductivity strongly increases with the electric
field. However, this increase was gradual, in agreement with
theoretical prediction [12], and no breakdown-like behavior
was observed.

One can attribute the observed breakdown to impact
ionization of the acceptors to the valence band. However, in
this case the increase in conductivity is expected to be much
more pronounced than the one observed experimentally. In
addition, for our case of relatively deep localized states, the
breakdown field is expected to be at least an order of magnitude
larger (see, e.g., [13]) compared to the experimentally
observed.

We assume that as a result of the breakdown states most
of the initially localized minority carriers are ionized to the

Figure 6. Hall voltage as a function of magnetic field for T = 4.2
and 300 K for a fixed direction of the current I = 2 nA.

extended states. Thus we have a unique possibility to find
their sign and total concentration (equal to the concentration
of the background compensating defect) by studies of the Hall
coefficient for this excited metallic state. The results for the
sample 485 at 4.2 K (which according to figure 4 corresponds
to the breakdown state) are presented (figure 6) compared to
the data obtained at 300 K. As it is clearly seen, the sign of
the Hall coefficient at 300 K is opposite to its sign at low
temperatures in figure 6. At the same time, the concentration
estimated from the Hall coefficient at low temperatures appears
to be 2–3 orders of magnitude lower than that at T = 300 K.
From this fact one can conclude that the total concentration
of the electrons is also 2–3 orders of magnitude lower than
the dopant concentrations, the compensation degree being
10−2–10−3. This estimate is compatible with the carrier
concentration obtained from the Hall conductance in the low-
Ohmic state (figure 6).

We believe that the observed non-Ohmic behavior is also
compatible with the presence of the BES. Indeed, the impact
ionization to the valence band should be excluded by the fact
that the conductance in the low-Ohmic state is still much
less than the high-temperature conductance dominated by the
valence band. Then, the electric fields in our experiments are
orders of magnitude less than necessary for impact ionization
of deep centers [13]. In addition, extremely small heat release
(note that the breakdown behavior occurs at currents less than
1 nA!) excludes heating.

Consequently, we conclude that the observed non-Ohmic
behavior results from the impact ionization of the electrons
localized in the tail of the impurity band to the BES. The
important factor is the presence of energy gap between the
Fermi level and the mobility edge separating the strongly
localized states and the BES in the impurity band. The
concentration of the localized states in this gap, see figure 5,
is much larger than the electron concentration in the BES.
Consequently, these states trap electrons belonging to the BES
with a much larger probability than the background dopants,
which have produced these electrons. We believe that it is
the impact ionization of these centers by delocalized electrons
that is responsible for the breakdown with very low threshold
field. Indeed, these states are much closer to the mobility
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edge than the deep tail states. A similar mechanism involving
the ‘intermediate’ states located between an ionized level and
bottom of the conduction band and leading to formation of S-
shaped I –V curves has been considered before [16].

More detailed estimates allowing for both the kinetics of
impact ionization and a nonequilibrium electron distribution in
strong electric fields are presented in the appendix. The critical
field, E1, for the ionization from the Fermi level to the BES is
estimated as

eE1(lile−ph)
1/2 ∼ ε4. (4)

Here li is the (transport) electron mean free path while le−ph is
the partial mean free path due to electron–phonon scattering.
Both quantities should be calculated for the electron energy
close to ε4. This equation has a clear physical meaning.
Indeed, ld ≡ (lile−ph)

1/2 is just the distance covered by a
diffusive electron during the inelastic mean free time. Thus
the breakdown occurs in the electrical field, E1, able to supply
an electron by the extra energy, eE1ld, close to the activation
energy, ε4, from the Fermi energy to the BES. The critical
field, E2, describing ionization from the ‘intermediate’ states,
is given by a similar estimate. However, the energy ε4 in this
case should be replaced by a smaller energy distance, εg (see
the appendix). Consequently, E1 > E2.

Now let us provide estimates for the relevant parameters.
The experimental low-temperature mobility increases with a
temperature decrease and almost saturates at T ≡ Ts �
10–15 K at a value of ∼104 cm2 V−1 s−1. Assuming m ∼
10−27 g (that is few times larger than the valence-band effective
mass) and using the experimental value of the saturated
mobility, one estimates the transport time as τi ∼ 10−11 s. To
estimate the electron–phonon relaxation time at the crossover
temperature we assume that the contributions of the electron–
phonon and impurity scattering are equal. Such an estimate
leads to a relaxation time of 4×10−11 s. Since we are interested
in the relaxation time at the mobility edge, ε = εm ∼ 1 meV,
we rescale the relaxation time to this energy using the scaling,
τ−1

e−ph ∝ ε2, see [17]. Estimating the electron velocity for the

energy ∼εm as 3 × 106 cm s−1 we get E1 ≈ 10 V cm−1. The
electric field E2 is expected to be several times smaller, firstly,
due to the fact that εg < εm, and secondly, due to electron–
electron interaction (see the appendix). The above order-of-
magnitude estimates agree with experimental results presented
in figure 6.

Additional indirect support of the conclusion that we do
not deal with impact ionization of holes to the valence band
follows from figure 3. One can see that the conductance of
the low-Ohmic state is of the order of the Ohmic conductance
at T ∼ 10 K, and is somewhat smaller than the conductance
at intermediate temperatures 20–40 K where the dominating
process is electron activation to the BES. In the case of
activation to the valence band, one could expect the resulting
conductance to be of the same order of magnitude as the high-
temperature conductance, i.e., several orders of magnitude
larger. Comparing the values of conductance at 10 K and in the
interval 20–40 K one concludes that only a fraction of localized
electrons are ionized to the BES.

Note that both the observed and the estimated threshold
field are surprisingly low. We know few references reporting

S-shaped I –V curves at such a low fields, except for the case
of shallow donors [18]. This fact allows us to rule out the
Mott-type scenario of MIT. Indeed, the observed activation
energy in the high-temperature domain almost coincides with
the ionization energy of an isolated (rather deep) acceptor.
However, for the Mott transition one would expect the Fermi
level to be situated somewhere between the energies of single
occupied and doubly occupied states. We can also conclude
that the observed ε4-conductivity cannot be attributed to the
nearest neighbor hopping (ε3-channel).

Thus, the combination of observed behaviors strongly
supports the scenario discussed above, which we call the
virtual Anderson transition. Let us stress once more specific
features of this phenomenon. The conventional Anderson
transition is a typically single-particle phenomenon. In our
case, the transport of the majority carriers (holes) is blocked
by Coulomb effects even though the single-particle wave
functions are extended. The charge transfer via the band
of extended states becomes possible only due to activation
of minority carriers (electrons) from the localized states
belonging to the tail of the impurity band. Another difference
between the above scenario and the conventional Anderson
transition is that in the latter case the transition takes place
when the Fermi level crosses the mobility edge. In our case,
the Fermi level does not cross the mobility edge. As a result,
the transport remains activated, the activation energy being
small. As shown in [7], the critical concentration of acceptors
allowing the above scenario is given by equation (2) and turns
out to be less than that for the conventional Mott transition by
a factor ln[ε0/(δε)]. Due to this factor the virtual Anderson
transition can take place in our samples, which have too low
an acceptor concentration to exhibit the conventional Mott–
Anderson transition.

In connection with observed behaviors, one can also
discuss the Lifshits scenario of localization [19]. The criterion
for this mechanism to be dominant differs from the Mott
criterion by numerical factors, which are beyond proper
control. In addition, this criterion is sensitive to the assumption
of a uniform spatial distribution of dopants, which is not
the case for our samples. Since it is known that deviations
from purely random impurity distribution suppress the Lifshits
transition we believe that it is irrelevant for our samples.

4. Conclusions

To conclude, the observed dependences of the conductance
and Hall effect on temperature and applied voltage confirm
the existence of a band of extended states in the narrow
impurity band. Since the Fermi level is located below this
band, the low-temperature transport is due to activation of
minority carriers to this band. Both the activation energy
and threshold voltage for non-Ohmic behavior turn out to
be anomalously small. This scenario, which we call the
virtual Anderson transition, seems to be typical for moderately
doped intentionally non-compensated materials. At large
dopant concentrations obeying the standard Mott criterion one
expects the conventional Mott–Anderson transition. However
at intermediate concentration one expects suppression of the
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virtual Anderson transition due to an increase of disorder (in
particular, due to partial overlapping of the lower and upper
Hubbard bands and formation of charged doubly occupied and
empty states). Thus the crossover between the two regimes can
be a complex one.

We would like to note that, although it seems as if we
deal with rather old subject, we are not aware of any papers
reporting similar phenomena. Here we mean the combination
of (i) Arrhenius behavior of conductivity with anomalously
small activation energies in a wide temperature domain;
(ii) gradual change of the Hall coefficient from positive to
negative values with a decrease of temperature; (iii) breakdown
behavior with S-shaped I –V curves at anomalously small
voltages and currents, which does not lead to restoration of
the conductivity to its high-temperature value. To the best of
our knowledge, our theoretical concept of the virtual Anderson
transition (a formation of extended states within the narrow
impurity band which still does not lead to metallic behavior
of conductivity) has not been discussed earlier.
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Appendix. Criterion for impact ionization

We consider impact ionization of localized minority carriers—
electrons—situated deeply in the tail of the impurity band (with
a concentration N1, controlled by compensating defects) by
extended minority carriers to delocalized states with energies
higher than the mobility edge εm. We also take into account the
localized states (with concentration N2 � N1) having energies
between εm and εF. These states are occupied by holes, so they
can serve as traps for electrons.

Let us use a simple 3-level model including the band of
extended states, localized ‘tail’ states and ‘intermediate’ states
having the same energy, εg < εm. In what follows we will show
that this model provides an adequate qualitative description of
the realistic situation.

Denoting the concentrations of the extended and trapped
electrons as n and ñ, respectively, we have the following rate
equations:

ṅ = −BRn(N2 + n) + AInF2ñ + AInF1(N1 − ñ − n),

˙̃n = −B̃Rñ(n + ñ) − AIF2nñ + BRn(N2 − ñ).

(A.1)
Here BR describes recombination of the electrons to any
localized states, B̃R describes the recombination of electrons
from the intermediate states to their initial positions, AI is a
coefficient of impact ionization, F1 and F2 are the relative
numbers of mobile electrons with kinetic energies larger than
εm and εg, respectively:

F1 = 1

n

∫ ∞

εm

dε ν(ε) f (ε), F2 = 1

ñ

∫ ∞

εg

dε ν(ε) f (ε).

(A.2)

Here ν(ε) is the density of states, while f (ε) is the electron
distribution function. In general, the coefficients AI, BR are
energy dependent. However we will neglect these dependences
since the width of the impurity band is not much larger than εm,
and thus the relative variation of ε at energies higher than the
threshold value εm is not large.

From the first of equations (A.1) one concludes that since
N2 � N1 the solution with n = ñ = 0 is stable with respect
to small fluctuations provided E < E1 where E1 satisfies the
equation

AIF1 N1 = BR N2. (A.3)

Another stationary solution with finite n and ñ = 0 is

ñ 	 BR N2/AIF2, n = N1 − ñ. (A.4)

Here we use the relations AIF2 � BR (which holds at electric
fields of the order of E1), B̃R � BR, and N2 � N1. This
solution is stable until ñ � N1, or

AIF2 N1 � BR N2, (A.5)

which defines another critical field, E2. Since εm > εg it is
expected that for a given field F2 � F1. Thus the value of E2

can be smaller than E1 and this is the case for our samples.
Thus we deal with two branches: the one corresponding to

n = ñ = 0, which is stable with respect to small fluctuations at
E < E1, and the solution given by equation (A.4). For electric
fields E ∼ E1, the second solution corresponds to almost
complete ionization of the electrons to the BES. However
this solution can exist at smaller fields, i.e., in the domain
E2 < E < E1, where the two solutions coexist and are stable
with respect to small fluctuations.

To complete the analysis one should estimate the
parameters BR and AI, as well as the relative numbers of the
localized and extended electrons, F1,2. The parameter AI is
just the product vσI where σI is the ionization cross-section.
The latter (for 2D) can be roughly estimated as σC(σ 2

t /λ2).
Here σC ∼ (e2/κε)1/2 is the geometrical cross-section of a
Coulomb scattering of an electron with kinetic energy ε > εm

by a charged center, κ being the dielectric constant, σt is the
cross-section of elastic scattering of an electron by the trap,
while λ is a typical electron wavelength. It can be roughly
estimated as λ−2 ∼ N3 where N3 is the concentration of
the delocalized states. The elastic cross-section σt can be
estimated from known values of electron mean free path li as
σt ∼ (N2li)

−1. Note that partial cross-section can be smaller
than that given by the above estimate if electron momentum
relaxation is dominated by other mechanism. As for BR,
we shall consider recombination due to phonon emission.
In this case the recombination process involves simultaneous
interaction of an electron with a phonon and a (neutral) trap
center. One can estimate the recombination cross-section σR ∼
BR/v as σ 2

t /vτe−ph,s . Correspondingly, the estimates of the
critical fields E1 (E2) can be rewritten as

BR N2

AIF1(2)

N1 	 N2

N3 N1vτe−ph,sσCF1(2)

= 1. (A.6)

Assuming that N2 ∼ N3 one concludes that our scenario can
hold provided

N1vτe−ph,sσC > 1 (A.7)

7
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since in any case F < 1. As can be readily estimated,
σC ∼ 2 × 10−5 cm while vτe−ph,s ∼ 10−4 cm. Thus this
criterion is met for N1 > 0.5 × 109 cm−2.

Now we have to address the relative concentrations, F1,2,
as functions of applied electric field. For that we will assume
that electron transport can be described by conventional
diffusion equations. Strictly speaking, this assumption is not
true for energies close to the mobility edge. However, we
believe that it will allow us to make correct order-of-magnitude
estimates. Neglecting electron–electron interaction (that is
appropriate for sufficiently small n) we get the following
equation for the electron distribution function:

[
DE + T 2

τe−ph,T

]
∇ε f + Ts

τe−ph,s
f = 0. (A.8)

Here the first term describes diffusion of an electron along
the energy axis due to combined acceleration by the applied
electric field (DE ∼ e2 E2v2τi) and quasi-elastic scattering by
acoustic phonons with energy ∼T . The last term corresponds
to the spontaneous emission of the phonons with the typical
energy of the delocalized electrons, which can be roughly
estimated as the saturation temperature, Ts.

While estimating the electron–phonon relaxation time for
a 2D electron gas one should take into account that the normal
component of the phonon momentum is not conserved. As a
result, at low temperatures τ−1

e−ph,T ∝ T 3ε−1/2, which is similar
to the electron–phonon relaxation rate in 3D metals for h̄ω ∼
T . However, for relatively small energies, ε < (ms2W )1/2

(where s is a sound velocity while W is an energy of lateral
quantization, which in our case of 2D impurity band is of the
order of the Bohr energy) τ−1

e−ph,s ∝ ε2 [17], while the typical
value of ε is Ts.

The solution of equation (A.8) depends on the relation
between DE and the phonon contribution to energy diffusion.
If the phonon contribution dominates, then the distribution
function is equilibrium, f ∝ e−ε/T . In the opposite case when

eEld � T (A.9)

the distribution is essentially strongly nonequilibrium,

f ∝ exp

[
−

∫ ε

dε′ ε′

(eEv)2τiτe−ph,s

]
. (A.10)

Substituting here τi ∝ ε−d with d = 2 and assuming ε ≈ εm

we get:

f (ε) ∝ exp

[
− ε2

5(eEv)2τi(ε)τe−ph,s

]
. (A.11)

This function is nearly constant at ε < ε∗ defined by the
equation where

5(eEv)2τi(ε∗)τe−ph,s = ε2
∗ (A.12)

and very rapidly decays at ε > ε∗. One can see that the
inequality (A.9) is equivalent to the inequality ε∗ � T . Since
an equilibrium phase at T → 0 corresponds to n = 0,
the threshold field and, correspondingly, F1, is related to a

distribution given by equation (A.11) which can be modeled
as F1 = θ(ε∗ − εm)(ε∗ − εm)/ε∗. Thus E1 can be estimated
from an equality ε∗ 	 εm which gives

eE1(li,mle−ph,m)1/2 ∼ εm. (A.13)

Indeed, for E > E1F1 ∼ 1, and the condition (A.6)
holds. Note that εm by definition coincides with the activation
energy ε4. The estimate of E2 is a similar one and we have
E2 < E1 because of the replacement of εm by εg < εm in
equation (A.13).

If n is high enough, the energy relaxation is dominated by
electron–electron rather than by electron–phonon processes. In
this case,

f (ε) = e−ε/Te (A.14)

where Te is the temperature of the electrons. However, the
energy transfer from the whole electron system to the bath is
still due to electron–phonon processes. The effective electron
temperature Te which is established in the system can be
derived from the energy balance between the energy gain from
electric field, σ E2 = n(eE)2τi/m and its decay to the thermal
bath ∼ n(Te − T )/τe−ph. Here σ is the conductivity. Thus we
have

E2γ (Te) = Te

T
− 1, γ ≡ e2τiτe−ph

mT

∣∣∣∣
ε=Te

. (A.15)

As follows from equations (A.14) and (A.12), the estimate
for Te is the same as for ε∗ except for numerical factors,
which are beyond the full control. Both quantities characterize
a typical electron energy, which is controlled by the energy
balance between electrons and is independent of the efficiency
of electron–electron processes. However the high-energy
asymptotic behavior of the distribution function strongly
depends on the electron–electron scattering. Namely, in the
absence of this scattering the decay of f (ε) at ε � ε∗, Te is
much more rapid—since, in contrast to equation (A.10), the
electron–electron scattering tends to establish the Boltzmann
distribution with effective electron temperature. As a result,
the effective impact ionization by the latter distribution can
be supported at an electric field somewhat weaker than that
following from the distribution given by equation (A.11).

Finally, let us discuss the validity of our model, which
ignores the possibility of a continuous spectrum, εi , of the
intermediate states and ascribing to all of them the same
value, εi = εg. Following the above assumption of
energy-independent BR and AI one concludes then the rhs
of equation (A.5) is independent of εi . At the same time,
the function F2 decreases with energy. For the following
discussion, it is convenient to introduce the normalized
probability, P(εi), to have an intermediate state with energy εi .
In this case the quantity F2(E, εg) in the lhs of equation (A.5)
should be generalized as �(E) ≡ ∫

i dεP(ε)F2(E, ε) where
the integration is performed over the band of intermediate
states. For a given electric field, F2(E, ε) is a decreasing
function of ε and one can expect that for any ε < εm the
inequality F2(E1, ε) > F1 is met. Since the probability P(ε)

is also a decreasing function one concludes that �(E1) > F1.
On the other hand, the quantity �(E) increases with electric

8
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field, so one can expect that it breaks down at some E2 < E1.
This conclusion qualitatively agrees with that made on the
basis of the 3-level model.
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